Tephrochronology and Electron Microprobe Commercial Services

We have a dedicated cryptotephra extraction laboratory for identifying non-visible volcanic ash layers in sedimentary sequences, including marine and lacustrine cores (e.g., Cullen et al., 2014; McLean et al., 2018) and archaeological sites (e.g., Lane et al., 2014; Barton et al., 2015). 

We also have facilities for preparing archaeological and geological samples for compositional analysis (grinding and polishing), and a wavelength-dispersive electron microprobe for determining major element compositions. Our JEOL-8600 electron microprobe is equipped with 4 spectrometers and capable of analysing, mapping and imaging a range of materials. We performed well in the inter-laboratory tephra analysis comparison (lab number 25), see: Kuehn, S.C., Froese, D.G., Shane, P.A.R. and INTAV Intercomparison Participants. 2011. The INTAV intercomparison of electron-beam microanalysis of glass by tephrochronology laboratories: Results and recommendations. Quaternary International, 246, 19-47. https://doi.org/10.1016/j.quaint.2011.08.022

Publications by members of Tephrochronology research group demonstrate the breadth of our knowledge of archaeological and Quaternary dating issues (e.g., Adler et al., 2014), volcanology and igneous petrology (e.g., Rawson et al., 2015; Smith et al., 2016; Stock et al., 2018), and the characterisation of archaeological (e.g., Duckworth et al., 2015) and volcanic samples (e.g., Albert et al., 2017; Smith et al., 2011; Stock et al., 2015). 

For an informal and free consultation regarding our facilities and prices please contact:

Dr. Victoria Smith (Laboratory Manager)

References

Adler, D. S., Wilkinson, K. N., Blockley, S., Mark, D. F., Pinhasi, R., Schmidt-Magee, B. A., Nahapetyan, S., Mallol, C., Berna, F., Glauberman, P. J ., Raczynski-Henk, Y., Wales, N., Frahm, E., Jöris, O., MacLeod, A.,Smith, V. C., Cullen, V. L., & Gasparian, B. (2014). Early Levallois technology and the Lower to Middle Paleolithic transition in the Southern Caucasus. Science, 345, 1609–1613. doi:10.1126/science.1256484

Albert, P. G., Tomlinson, E. L., Smith, V. C., Di Traglia, F., Pistolesi, M., Morris, A., et al. (2017). Glass geochemistry of pyroclastic deposits from the Aeolian Islands in the last 50 ka: A proximal database for tephrochronology. Journal of Volcanology and Geothermal Research, 336(C), 81–107. http://doi.org/10.1016/j.jvolgeores.2017.02.008

Barton. N., Lane, C., Albert, P.G., White, D., Collcut, S.N., Bouzouggar, A., Ditchfield, P., Farr, L., Oh, A., Ottolini, L., Smith, V.C., Van Peer, P., & Kindermann, K. (2015). The role of cryptotephra in refining the chronology of Late Pleistocene human evolution and cultural change in North Africa. Quaternary Science Reviews, 118, 151-169.  doi:10.1016/j.quascirev.2014.09.008

Cullen, V. L., Smith, V. C., & Arz, H. W. (2014). The detailed tephrostratigraphy of a core from the south‐east Black Sea spanning the last ∼60 ka. Journal of Quaternary Science, 29(7), 675–690. http://doi.org/10.1002/jqs.2739

Duckworth, C. N., Mattingly, D. J., & Smith, V. C. (2015). From the Mediterranean to the Libyan Sahara. Chemical analyses of Garamantian glass. Journal of Archaeological Science: Reports, 1–7. http://doi.org/10.1016/j.jasrep.2015.02.007

Lane, C. S., Cullen, V. L., White, D., Bramham-Law, C. W. F., & Smith, V. C. (2014). Cryptotephra as a dating and correlation tool in archaeology. Journal of Archaeological Science, 42(C), 42–50. http://doi.org/10.1016/j.jas.2013.10.033

McLean, D., Albert, P.G., Nakagawa, T., Suzuki, T., Staff, R.A., Yamada, K., Kitaba, I., Haraguchi, T., Kitagawa, J., SG14 Project Members, & Smith, V.C.2018. Integrating the Holocene tephrostratigraphy for East Asia using a high-resolution cryptotephra study from Lake Suigetsu (SG14 core), central Japan. Quaternary Science Reviews, 183, 36-58.doi:10.1016/j.quascirev.2017.12.013

Rawson, H., Naranjo, J. A., Smith, V. C., Fontijn, K., Pyle, D. M., Mather, T. A., & Moreno, H. (2015). The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. Journal of Volcanology and Geothermal Research, 299, 103-129. doi:10.1016/j.jvolgeores.2015.04.003

Smith, V. C., Isaia, R., Engwell, S. L., & Albert, P. G. (2016). Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: Implications for ultra-distal ash transport during the large caldera-forming eruption. Bulletin of Volcanology, 78, 45. doi:10.1007/s00445-016-1037-0

Smith, V. C., Pearce, N. J. G., Matthews, N. E., Westgate, J. A., Petraglia, M. D., Haslam, M., et al. (2011). Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quaternary International, 246(1), 97–104. http://doi.org/10.1016/j.quaint.2011.05.012

Stock, M. J., Humphreys, M. C. S., Smith, V. C., Johnson, R. D., Pyle, D. M., & EIMF. (2015). New constraints on electron-beam induced halogen migration in apatite. American Mineralogist,100(1), 281–293. http://doi.org/10.2138/am-2015-4949

Stock, M. J., Humphreys, M., Smith, V. C., Isaia, R., Brooker, R. A., & Pyle, D. M. (2018). Tracking volatile behaviour in sub-volcanic plumbing systems using apatite and glass: insights into pre-eruptive processes at Campi Flegrei, Italy. Journal of Petrology, egy020, 1-29. http://doi.org/10.1093/petrology/egy020

 

List of site pages